POWER GENERATION CLASS

MATERI PEMBELAJARAN LISTRIK "SEMANGAT DALAM BELAJAR"
Selamat Datang Di WebBlog "Power Generation Class"


DOWNLOAD SOFTWARE KONTROL INSTALASI GEDUNG
technoku_2@yahoo.co.id

Jumat, 28 November 2008

Materi Listrik

Duh yang mau ujian.
Yang akan belajar untuk hadapi ujian Listrik 4
Untuk bahan materi Rangkaian Listrik dan Teknik Listrik kalian bisa langsung

di Download :
1. Rangkaian Listrik
2. Teknik Listrik

Senin, 24 November 2008

Dioda

Untuk artikel Dioda dapat dilihat, Click Disini

wiring

Wiring Pada Jaringan Distribusi


Pada Jaringan listrik GTT (gadu tiang trafo) input pada sisi primer tegangan 20 KV diturunkan menjadi 220/380 V pada sisi sekunder trafo, hubungan pada trafo distrbusi pada sisi primer dihubungkan delta dan pada sisi sekunder hubungan bintang, tegangan antar fasa terlihat pada gambar besarnya 380 V, fasa dengan netral 220 V.








Rabu, 19 November 2008

Gambaran Sistem Distribusi

Gambaran Umum Sistem Distribusi

Jaringan distribusi adalah merupakan bagian dari sistem tenaga listrik secara keseluruhan, dan berfungsi untuk menyalurkan tenaga listrik dari suatu sumber besar (Bulk Power Source) sampai keseluruhan pelayanan konsumen.

Sistem jaringan distribusi dapat dibagi dalam dua klasifikasi yaitu :

a) Jaringan distribusi primer

b) Jaringan distribusi sekunder

Secara umum sistem distribusi dapat dibagi atas beberapa bagian antara lain:

1. Sumber Daya Besar (Bulk Power Source)

Yaitu merupakan pusat penerima daya saluran transmisi dan mengubahnya menjadi saluran subtransmisi.

2. Jaringan Subtransmisi

Yaitu merupakan jaringan yang menyalurkan daya dari sumber daya besar menuju ke gardu induk distribusi.

3. Gardu Induk Distribusi

Yaitu merupakan tempat penerima daya dari jaringan subtransmisi dan merubah tegangan jaringan distribusi primer.

4. Jaringan Distribusi Primer

Yaitu merupakan jaringan yang menyalurkan daya dari gardu induk menuju transformator distribusi.

5. Transformator Distribusi

Yaitu dapat menerima daya dari jaringan distribusi primer dan mengubah tegangan tersebut menjadi tegangan yang diperlukan oleh konsumen (beban).

6. Jaringan Distribusi Sekunder

Yaitu merupakan jaringan yang menyalurkan daya dari transformator distribusi menuju konsumen atau beban. Jaringan distribusi sekunder diatas dapat dilihat pada single line dibawah ini :

Tegangan yang keluar dari pembangkit

tenaga listrik, mempunyai sistem tegangan menengah 11 kV. Kemudian tegangan dinaikkan menjadi tegangan transmisi yang besarnya berkisar antara 70, 150, 500 kV. Dengan menaikkan tegangan tersebut maka dapat memperkecil kerugian yang terdapat pada saluran transmisi sebanding dengan kuadrat arus yang mengalir (I 2 R). Atau dengan daya yang sama, bila tegangan dinaikkan maka arus yang mengalir akan lebih kecil dan kerugian daya akan lebih kecil.

Pada gardu induk distribusi, tingkat tegangan subtransmisi diturunkan menjadi tingkat tegangan distribusi primer yang besarnya 20 kV. Dan pada gardu induk distribusi, tingkat tegangan distribusi primer ini diturunkan menjadi tegangan sekunder yang besarnya berkisar antara 380/ 220 Volt.


Keterangan :

A. Generator = Pusat Pembangkit Tenaga Listrik, tegangan 11 kV

B. Trafo (step up) = Gardu Induk, tegangan 11 kV / 70 – 500 kV

C. Transmisi = Saluran Transmisi tegangan 70 – 500 kV

D. Trafo (step down) = Gardu Induk, tegangan 70/20 kV

E. Distribusi Primer = Jaringan Tegangan Menengah 20 kV

F. Trafo (step down) = Gardu Distribusi, 20 kV / (400/231 V)

G. Distribusi Sekunder = Jaringan Tegangan Rendah, 380/220 V

Dari busbar GI tenaga listrik disalurkan melalui feder-feder saluran udara kedaerah-daerah beban, menggunakan sitem 3 fasa, 3 kawat, dengan tegangan antar fasa 20 kV.

Sistem Distribusi

Sistem Jaringan Distribusi

Jaringan Tegangan Menengah adalah jaringan tenaga listrik yang berfungsi untuk menghubungkan gardu induk sebagai suplay tenaga listrik dengan gardu – gardu distribusi. Sistem tegangan menengah yang digunakan di Distribusi pada umumnya adalah 20 kV. Jaringan ini mempunyai struktur/pola sedemikian rupa, sehingga dalam pengoperasiannya mudah dan handal.

1. Sistem / pola Radial

Pola ini merupakan pola yang paling sederhana dan umumnya banyak digunakan di daerah pedesaan / sistem yang kecil. Umunya menggunakan SUTM(Saluran Udara Tegangan Menengah), Sistem Radial tidak terlalu rumit, tetapi memiliki tingkat keandalan yang rendah.


2. Sistem / pola open loop

Merupakan pengembangan dari sistem radial, sebagai akibat dari diperlukannya kehandalan yang lebih tinggi dan umumnya sistem ini dapat dipasok dalam satu gardu induk. Dimungkinkan juga dari gardu induk lain tetapi harus dalam satu sistem di sisi tegangan tinggi, karena hal ini diperlukan untuk manuver beban pada saat terjadi gangguan.


3. Sistem / pola Close Loop

Sistem close loop ini layak digunakan untuk jaringan yang dipasok dari satu gardu induk, memerlukan sistem proteksi yang lebih rumit biasanya menggunakan rele arah(bidirectional). Sistem ini mempunyai kehandalan yang lebih tinggi dibanding sistem yang lain.

4. Sistem / pola Spindel

Sistem ini pada umumnya banyak digunakan di Distribusi Memiliki kehandalan yang relatif tinggi karena disediakan satu expres feeder / penyulang tanpa beban dari gardu induk sampai gardu hubung Biasanya pada tiap penyulang terdapat gardu tengah (middle point) yang berfungsi untuk titik manufer apabila terjadi gangguan pada jaringan tersebut.



5. Sistem / pola Cluster

Sistem cluster sangat mirip dengan sistem spindel, juga disediakan satu feeder khusus tanpa beban(feeder expres).


Jumat, 14 November 2008

Megger Test

TEST INSULASI / INSULATION TEST

Mengapa kita melakukan pengetesan insulation/ megger test ?? Test insulasi dipergunakan untuk mengetahui kondisi konduktor di jaringan. Insulasi yang memadai diperlukan untuk menghindari terjadinya direct contact seperti short circuit atau ground fault. Buruknya insulasi jaringan bisa mengakibatkan terjadinya arus bocor dan bisa membahayakan nyawa seseorang. Dimungkinkan juga akan menimbulkan percikan api yang bisa mengakibatkan kebakaran.

Pengetesan dilakukan dengan pengukuran tingkat kebocoran jaringan line/ phase dngan netral dan line dengan ground. Sebelum melakukan pengetesan terlebih dahulu dilakukan pemutusan hubungan komponen elektronik dan pilot lamp dengan jaringan. Metode pengetesan bisa dilakukan dengan tegangan yang berbeda sesuai dengan kebutuhan. Batas minimum insulasi yang bisa ditolerir untuk pengetesan dengan tegangan 500 VDC adalah 0,5 Meg Ohm sedangkan dengan tegangan 1000 VDC adalah 1 Meg Ohm.

Insulasi menjadi salah satu penyebab utama terbakarnya sebuah motor selain masalah elektrik dan mekanik. Sebuah motor akan mengalami penurunan tingkat insulasi karena usia pakai. Jika insulasi motor telah mencapai antara 10 ~ 1 Meg Ohm maka perlu dilakukan preventive maintenance. Jika insulasi dibawah 1 Meg Ohm berarti motor dalam kondisi kritis.


Rumus Perhitungan Pengukuran Insulation Test

1. Pengukuran tegangan Rendah:

Rumus 1000. E (minimal)

Contoh :

E =380 V

R isolasi = 1000 . 380

= 380.000 Ω

= 0.38 M Ω

Bila hasil pengukuran lebih dari 0.38 maka alat tersebut masih bisa dikatakan baik.

2. Pengukuran Tegangan Menengah dan Tinggi :

Mengunakan DC Test

Rumus R ­isolator Arus bocor

Max = ………… μA

Lihat table name plate alat


Earth Tester

PENGUKURAN TAHANAN TANAH

Besarnya tahanan tanah sangat penting untuk diketahui sebelum dilakukan pentanahan dalam sistem pengaman dalam instalasi listrik. Untuk mengetahui besar tahanan tanah pada suatu area digunakan alat ukur dengan penampil analog. Hasil pengukuran secara analog sering terjadi kesalahan dalam pembacaan hasil pengukurannya. Untuk mengatasi permasalahan tersebut,maka dirancanglah suatu alat ukur tahanan tanah digital yang memiliki kemudahan dalam pembacaan nilai tahanan yang diukur. Alat ukur ini penampilnya menggunakan digital pada segmen-segmen, sehingga dengan mudah menyimpan data-data yang terukur. Perancangan alat ukur tahanan tanah digital ini menggunakan tiga batang elektroda yang ditanahkan yaitu elektroda E (Earth), elektroda P (Potensial) dan elektroda C (Curren). Tujuan penggunaan tiga batang elektroda tersebut adalah untuk mengetahui sejauh mana tahanan dapat mengalirkan arus listrik. Alat ukur tahanan tanah ini terdiri dari beberapa blok diagram rangkaian, antara lain rangkaian osilator,rangkaian tegangan input, rangkaian arus input, mikrokontroler dan rangkaian penampil. Sebelum hasil pengukuran di tampilkan ke LCD, data diolah dirangkaian mikrokontroler. Keuntungan dengan manggunakan mikrokontuler ini yaitu keluaran dari rangkaian input ini debelum masuk ke LCD bisa diatur. Sehingga, perancangan alat ukur tahanan tanah digital ini dapat mengukur tahanan tanah dengan teliti dan akurat. Hadil pengukuran tahanan tanah juga bergantung pada kondisi tanah itu sendiri. Pengukuran tahanan tanah dilakukan dengan membandingkan alat ukur rakitan dengan alat ukur yang sudah ada dengan merek Kyoritsu Earth Tester Digital. Selisih nilai pengukuran antara alat ukur rakitan dengan alat ukur yang sudah ada adalah sebesar 0,31 ohm.

Kamis, 06 November 2008

Bahan instalasi listrik

BAHAN – BAHAN DALAM INSTALASI LISTRIK


Pengertian bahan

Bahan secara sederhana dapat diartikan sesuatu zat yang dapat berubah menjadi sesuatu atau barang lain. Menurut kondisinya bahan dibagi menjadi tiga bagian yaitu :

1. Bahan mentah

2. Bahan setengah jadi

3. Bahan jadi

Menurut sifat kelistrikan bahan bahan dibagi menjadi tiga bagian yaitu :

1. Bahan penghantar ( konduktor )

2. Bahan isolator

3. Bahan semikonduktor

Menurut sifat kemagnetan terdiri dari :

1. Magnet permanen

2. Mangnet remanen (sementara)

3. Bahan non magnetis

4. Paramagnetis

Dalam materi instalasi listrik akan dijelaskan beberapa bahan pendukung diantaranya :

1. Penghantar / kabel

Kawat penghantar digunakan untuk menghubungkan sumber tegangan dengan beban. Kawat penghantar yang baik umumnya terbuat dari logam. Dalam instalasi listrik ada berbagai macam jenis kabel yang digunakan sesuai dengan kebutuhan daya dari kegunaannya. Macam – macam kabel tersebut diantaranya :

a. Kabel NYA

Digunakan dalam instalasi rumah dan system tenaga. Dalam instalasi rumah digunakan kabel NYAdengan ukuran 1,5 mm2 dan 2,5 mm2. Syarat penandaan dari kabel NYA :

Huruf kode

Komponen

N

Kabel jenis standart dengan penghantar tembaga

Y

Isolator PVC

A

Kawat berisolasi

Re

Penghantar pada bulat

Rm

Penghantar bulat berkawat banyak

NYA : berinti tunggal, berlapis bahan isolasi PVC, untuk instalasi luar/kabel udara. Kode warna isolasi ada warna merah, kuning, biru dan hitam. Kabel tipe ini umum dipergunakan di perumahan karena harganya yang relatif murah. Lapisan isolasinya hanya 1 lapis sehingga mudah cacat, tidak tahan air (NYA adalah tipe kabel udara) dan mudah digigit tikus.

Agar aman memakai kabel tipe ini, kabel harus dipasang dalam pipa/conduit jenis PVC atau saluran tertutup. Sehingga tidak mudah menjadi sasaran gigitan tikus, dan apabila ada isolasi yang terkelupas tidak tersentuh langsung oleh orang

b. Kabel NYM

Digunakan untuk kabel instalasi listrik rumah atau gedung dan system tenaga. Kabel NYM berinti lebih dari 1

Huruf kode

Komponen

N

Kabel jenis standart dengan penghantar tembaga

Y

Isolator PVC

M

Berselubung PVC

Re

Penghantar pada bulat

Rm

Penghantar bulat berkawat banyak

NYM : memiliki lapisan isolasi PVC (biasanya warna putih atau abu-abu), ada yang berinti 2, 3 atau 4. Kabel NYM memiliki lapisan isolasi dua lapis, sehingga tingkat keamanannya lebih baik dari kabel NYA (harganya lebih mahal dari NYA). Kabel ini dapat dipergunakan dilingkungan yang kering dan basah, namun tidak boleh ditanam.




c. Kabel NYY

Memiliki lapisan isolasi PVC (biasanya warna hitam), ada yang berinti 2, 3 atau 4. Kabel NYY dieprgunakan untuk instalasi tertanam (kabel tanah), dan memiliki lapisan isolasi yang lebih kuat dari kabel NYM (harganya lebih mahal dari NYM). Kabel NYY memiliki isolasi yang terbuat dari bahan yang tidak disukai tikus.




d. Tanda kabel / warna

Merah / Kuning / Hitam = Fasa R, Fasa S, Fasa T

Belang hijau kuning = Ground

Biru = Netral



2. Macam – macam saklar

Saklar merupakan alat untuk menghubungkan dan memutuskan hubungan listrik. Saklar banyak macam dan jenisnya, misalnya untuk kebutuhan instalasi penerangan, instalasi tenaga dan banyak lagi jenisnya, yang sering kita jumpai pada kehidupan sehari – hari dirumah maupun dimana saja. Ada saklar yang dipasang dalam tembok (inbow) dan diluar tembok (out bow)

Untuk instalasi penerangan umumnya digunakan saklar untuk menyalakan dan mematikan lampu. Saklar menurut fungsinya dibedakan menjadi :

a. Saklar kutub satu

b. Saklar kutub ganda

c. Saklar kutub tiga

d. Saklar kelompok

e. Saklar seri

f. Saklar tukar

g. Saklar silang

3. Macam – macam fitting

a. Fiting langit-langit

Bisanya digunakan untuk pemasangan lampu yang menggunakan roset yang menempel pada langit-langit(eternity/lainnya).

b. Fiting gantung

Pemasangannya biasanya digabungkan pada fiting langit-langit. Pada bigian atas fiting ini terdapat cicin yang dipakai untuk mengikatkan tali penarik hingga kedudukannya menjadi kuat.

c. Stop Kontak

Pemasangan biasanya pada tempat-tempat lembab yang kemungkinan terjadipercikan air. Contohnya kamar mandi, kolam dan sebagainya

4. Pipa

Merupakan tempat untuk mendapatkan sumber tegangan. Tegangan ini diperoleh dari hantaran fasa dan nol yang dihubungkan dengan kontak-kontak stopkontak. Stop kontak dipasang untuk memudahkan mendapatkan tegangan yang diperlukan bagi peralatan listrik yang dapat dipindahkan.

5. Stop Kontak

Didalam instalasi listrik banyak sekali dipakai pipa. Pipa digunakan sebagai pelindung kabel atau hantaran darigangguan. Dengan pipa pemasangan hantaran atau kabel lebih rapi. Pipa yang digunakan biasanya jenis pipa union atau bisa juga pipa PVC dengan ukuran 5/8 dlm.

6. Klem

Adalah suatu bahan yang dipakai untuk menahan pipa agar dapat dipasang pada dinding atau langit-langit. Klem ini dibuatdari pelat besi atau plastic dengan ukuran disesuaikan dengan ukuran pipa. jarak pemasangan klem satu dengan lainny maksimal 80 cm.

7. Kotak Sambung

Pada saat penyambung kabel pada titik percabangan harus menggunakan kotak sambung. Menurut ketentuan peraturan instalasi yang diijinkan tidak boleh dalam pipa terdapat sambungan,karena dikwatirkan kawat putus dalam pipa.

Macam-macam kotak sambung:

a. Kotak sambung cabang dua

Digunakan untuk menyambung lurus.

b. Kotak sambung cabang tiga (T-Dos)

Digunakan untuk percabangan-percabangan, misalnya terdapat pemakaian saklar, stop kontak.

c. Kotak sambung cabang empat (Cross Dos)

Pemakaian sama dengan T-Dos hanya percabangan bukan tiga tapi empat.

8. Rol Isolator

Untuk pemasangan kawat hantaran diatas plafon tanpa menggunakan pipa digunakan rol isolator. Jarak antara rol satu dengan yang lain 50 cm dan antar hantaran jaraknya 5 cm. Rol isolator dibuat dari keramik atau plastic dan kekuatannya disesuaikan dengan besar hantaran dan tegangan kerja untuk kepentingan peletakan besar hantaran dan tegangan kerja untuk kepentingan peletakan hantaran pada instalasi penerangan rumah.

9. Kotak Sekring

Kotak sekring merupkan alat yang digunakan membatasi besar arus yang mengalir dalam suatu rangkaian listrik. Fungsinya sebagai pengaman. Apbiladialiri arus melebihi ketetapa maka sekring akan putus, sehingga tidak ada arus yang mengalir dalam rangkaian. Ada dua tipe sekring yang terdapat dipasaran yaitu sekring patron lebur dan sekring otomat. Keduanya memiliki fungsi yang sama tapi kerja teknis yang berbeda.

10. MCB (miniature Circuit Breaker)

Fungsi MCB adalah untuk pengaman terhadap beban lebih atau hubung singkat. Bila terjadi arus beban lebih atau hubung pendek MCB memutuskan sirkit dari sumber.

Komponen untuk mengamankan beban lebih adalah bimetal sedangkanuntuk mengamankan arus hubung pendek adalah electromagnet. Bila terjadi hubung singkat atau arus lebih yang besar maka kumparan magnetic R akan memerintahkan kontak jatuh. Tegangan kerja sampai dengan 440 VAC, MCB dipakai sampai 50 A.

11. KWH Meter

Digunakan sebagai pengukur energi listrik. Secara praktisnya KWH meter digunakan untuk mengukur daya terpakai (daya aktif) yang digunakan dalam pemakaian beban listrik dalam jangka waktu tertentu.

Prinsip kerja KWH meter:

Bila arus beban I mengalir melalui Wc akan menyebabkan terjadinya fluksi I. Wp memiliki sejumla lilitan yang besar yang dianggap sebagai reaktansi murni, sehingga arus Ip yang mengalir melalui Wb akan tertinggal fasanya terhadap tegangan beban dengan sudut 90 0dan menyebabkan fluksi magnetis 2, misalnya karena pengaruh momen gerak ini, kepingan lauminium akan berputar dengan kecepatan n. sambil berputar, priringan akan memotong garis-garis fluksi magnet m dari magnet permanen dan akn menyebabkan terjadinya arus-arus putar yang berbanding lurus terhadap n@m2 dalam kepingan aluminium tersebut. Arus –arus putar ini akan pula memotong garis-garis fluksi @m sehingga kepingan akan mengalami momen redaman Td yang berbanding lurus terhadap n@m2. Bila momen-momen tersebut yaitu Td dan Td dalam keadaan seimbang maka berlaku hubungan:


KdVI cos θ = Km nΦm2

atau

n = Kd / Km Φm (V I cos θ)


Dengan Kd dan Km sebagai konstanta. Jadi dari persamaan dapat terlihat bahwa kecepatan putar n, dari kepungan D, adalah berbanding lurus dengan beban VI cos@, sehingga dengna demikian maka jumlah perputaran dari pada kepingan tersebut,untuk suatu jangka waktu tertentu berbanding dengan energy yang akan diukur untuk jangka waktu tersebut.


Daftar istilah dalam instalasi listrik :

a. Arus lebih

Setiap arus yang melebihi harga nominalnya (arus kerja yang mendasari perbuatan peralatan tersebut).

b. Arus gangguan

Arus yang disebabkan oleh kerusakan isolasi.

c. Arus gangguan tanah

Arus yang mengalir ke tanah

d. Kemampuan hantar arus

Arus maksimum yang dapat dialirkan dengan kontinu oleh penghantar pada keadaan tertentu tanpa menimbulkan kenaikan suhu melampaui nilai tertentu.

e. Penghantar nol

Penghantar yang dibumikan dengan tugas rangkap, yaitu sebagai penghantar pengaman dan penghantar netral.

Transformator listrik tenaga

TRANSFORMATOR PADA LISTRIK TENAGA

1. Transformator

a) Prinsip Kerja

Hukum utama dalam transformator adalah hukum induksi faraday. Menurut hukum ini suatu gaya listrik melalui garis lengkung yang tertutup, adalah berbanding dengan perubahan persatuan waktu dari pada arus induksi atau flux yang dilingkari oleh garis lengkung itu.

Selain hukum Faraday, transformator menggunakan hukum Lorenz.

Dasar dari teori transformator sebagai berikut: Arus listrik bolak balik yang mengalir mengelilingi suatu inti besi maka inti besi itu berubah menjadi magnit dan apabila magnit tersebut dikelilingi oleh suatu belitan maka pada kedua ujung belitan tersebut akan terjadi beda tegangan.


b) Pengertian Transformator

Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurkan tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya.

Dalam operasi penyaluran tenaga listrik transformator dapat dikatakan sebagai jantung dari transmisi dan distribusi. Dalam kondisi ini suatu transformator diharapkan dapat beroperasi secara maksimal (kalau bisa terus menerus tanpa berhenti). Mengingat kerja keras dari suatu transformator seperti itu maka cara pemeliharaan juga dituntut sebaik mungkin. Oleh karena itu transformator harus dipelihara dengan menggunakan sistem dan peralatan yang benar, baik dan tepat. Untuk itu regu pemeliharaan harus mengetahui bagian-bagian transformator dan bagian-bagian mana yang perlu diawasi melebihi bagian yang lainnya.

Berdasarkan tegangan operasinya dapat dibedakan

menjadi transformator 500/150 kV dan 150/70 kV biasa disebut Interbus Transformator (IBT). Transformator 150/20 kV dan 70/20 kV disebut juga trafo distribusi. Titik netral transformator ditanahkan sesuai dengan kebutuhan untuk sistem pengamanan/proteksi. Sebagai contoh transformator 150/70 kV ditanahkan secara langsung di sisi netral 150 kV dan transformator 70/20 kV ditanahkan dengan tahanan rendah atau tahanan tinggi atau langsung di sisi netral 20 kV nya.


Transformator dapat dibagi menurut fungsi/pemakaian seperti:

1) Transformator Mesin (Pembangkit).

2) Tarnsformator Gardu Induk.

3) Transformator Distribusi

Transformator dapat juga dibagi menurut Kapasitas dan Tegangan seperti:

1) Transformator besar

2) Transformator sedang

3) Transformator kecil.


2. Konstruksi Bagian-bagian Transformator

a. Bagian Utama

1) Inti Besi

Berfungsi untuk mempermudah jalan fluksi, yang ditimbulkan oleh arus listrik yang melalui kumparan. Dibuat dari lempengan-lempengan besi tipis yang berisolasi, untuk mengurangi panas (sebagai rugi-rugi besi) yang ditimbulkan oleh Eddy Current.

2) Kumparan Transformator

Adalah beberapa lilitan kawat berisolasi yang membentuk suatu kumparan. Kumparan tersebut terdiri kumparan primer dan kumparan sekunder yang diisolasi baik terhadap inti besi maupun terhadap antar kumparan dengan isolasi padat seperti karton, pertinak dan lain-lain.

Kumparan tersebut sebagai alat transformasi tegangan dan arus.


Gambar 7. Kumparan Phasa RST.

3) Minyak Transformator

Sebagian besar kumparan-kumparan dan inti trafo tenaga direndam dalam minyak trafo, terutama trafo-trafo tenaga yang berkapasitas besar, karena minyak trafo mempunyai sifat sebagai isolasi dan media pemindah, sehingga minyak trafo tersebut berfungsi sebagai media pendingin dan isolasi.

3. Bushing

Hubungan antara kumparan trafo ke jaringan luar melalui sebuah bushing yaitu sebuah konduktor yang diselubungi oleh isolator, yang sekaligus berfungsi sebagai penyekat antara konduktor tersebut dengan tangki trafo.

Gambar 8. Contoh Bushing Transformator

4. Tangki Konservator

Pada umumnya bagian-bagian dari trafo yang terendam minyak trafo berada (di tempatkan) dalam tangki. Untuk menampung pemuaian minyak trafo, tangki dilengkapi dengan konservator.

Gambar 9. Konservator Trafo

b. Peralatan Bantu

1) Pendingin Transformator

Transformator umumnya diisi minyak sebagai bahan isolasi antara kumparan dengan kumparan dan kumparan dengan kaki.

Transformator tenaga umumnya dilengkapi dengan sistem pendingin, yang dimaksudkan agar trafo dapat bekerja sesuai rating yang tertera pada spesifikasinya. Trafo yang dilengkapi pendingin adalah yang berkapasitas di atas 10 MVA. Tipe pendingin trafo adalah secara alami dan paksaan, yaitu menggunakan riben (sirip), radiator dan bantuan motor untuk mengembus udara. Banyaknya riben atau motor-motor yang terpasang sesuai dengan kapasitas trafo dan permukaan yang didinginkan.

Transformator dalam keadaan bertegangan dan belum dibebani akan timbul rugi-rugi yang dapat menimbulkan kondisi trafo tersebut panas, namun panas yang timbul kecil. Apabila transformator tersebut dibebani maka kumparan dan minyak di dalam trafo akan bertambah panas sesuai dengan kenaikan bebannya. Panas yang timbul pada kumparan akan diteruskan secara konduksi pada minyak trafo yang berfungsi sebagai pendingin. Baik kumparan maupun minyak trafo mempunyai batas-batas operasi panas yang diijinkan. Isolasi kumparan yang terdiri dari kertas kraft mempunyai batas panas yang diijinkan sesuai dengan klas isolasi spesifikasi trafo. Demikian juga minyak isolasi trafo mempunyai batas panas yang diijinkan. Apabila panas-panas tersebut dilampaui maka isolasi akan rusak dan secara keseluruhan transformator tersebut akan rusak. Panas tersebut harus direduksi dengan memasang sistem pendingin yaitu: riben, radiator kipas-kipas dan pompa minyak.

(a) Pendingin Dengan Riben

Transformator dengan kapasitas 10 sampai dengan 30 MVA menggunakan riben atau sirip-sirip sebagai pendingin. Minyak panas yang ditimbulkan oleh panas kumparan akan terjadi pada bagian atas trafo sementara minyak yang dingin berada di bawah bagian trafo. Kondisi ini secara alami akan mengalir dari bawah trafo dan diteruskan melalui riben atau sirip pendingin, yang dirancang sedemikian sehingga minyak panas yang melalui riben akan didinginkan oleh aliran udara luar.

(b) Pendingin Menggunakan Kipas

Transformator dengan kapasitas lebih dari 30 MVA biasanya dilengkapi dengan riben kipas pendingin, radiator dan pompa minyak.

· Menggunakan Riben dan Kipas

Minyak trafo panas yang dialirkan melalui riben seperti yang dijelaskan di atas akan dihembus dengan udara dari kipas pendingin, baik secara vertikal ataupun horizontal sehingga minyak panas sebelum masuk kedalam trafo telah didinginkan dengan udara luar dengan bantuan kipas angin.

· Menggunakan adiator dan Kipas Pendingin

Minyak panas dari dalam trafo dipompa dengan motor pompa minyak dialirkan melalui radiator-radiator dan pada bagian depan radiator terpasang kipas-kipas pendingin yang akan menarik udara panas yang ditimbulkan oleh minyak panas ke udara luar dan dari sela-sela radiator akan mengalir udara segar yang akan mendinginkan minyak trafo.

Gambar 10. Pendingin Sirip dan Kipas

2) Pengaruh Panas pada Transformator

Panas lebih pada trafo adalah sangat merusak pengaruhnya baik pada sistem solasi maupun minyak trafo. Besi maupun tembaga umumnya tidak berpengaruh.

(a) Kertas Selulose

Material isolasi dapat menciut dan sangat rapuh. Pengaruh sekunder dari panas lebih juga sangat penting misalnya produksi gas dan free water pada waktu terjadi dekomposisi dari material pressboard dan kertas. Jika ada free water yang tersisa selanjutnya akan mempercepat proses degradasi isolasi. Jika terdapat gasses selama dekomposisi tak dapat keluar dari winding gelembung-gelembung dapat terkumpul pada daerah tekanan listrik yang tinggi, akan memindahkan minyak (displace oil) dan akan memberikan kerusakan sebelum waktunya (premature failure). Oleh karena itu sejak transformator tidak tahan terhadap hubung singkat, tegangan impulse, switching surge, beban lebih dari transformator harus dibatasi dari hot spot temperatur tidak lebih dari 1400C.

(b) Minyak Mineral

Mengingat lagi aturan untuk kertas selulose sebagai “80 C” sementara minyak trafo beroperasi pada “100 C”. Pemilik atau operator harus berpendapat dua temperatur kritis yaitu 1500 C dan 1100 C untuk isolasi padat dan 600 C untuk isolasi minyak trafo.

Umur minyak trafo yang berguna dapat diharapkan jika temperatur minyak bagian atas tidak lebih dari 600 C. Harapan umur berguna minyak trafo kondisi energize dapat mencapai 20 tahun sebelum mencapai titik kritis jumlah kandungan asam 0,25 mg KOH/g. Jumlah kandungan asam ini tak tercapai, tingkat perubahan umur minyak trafo dari linier menjadi fungsi eksponensial. Umur berguna minyak trafo dipotong ½ untuk kenaikan setiap 100 C beyond 600 C faktor yang lain konstan. Tabel berikut memperlihatkan periode waktu yang diharapkan pada bermacam-macam suhu operasi untuk mencapai jumlah kandungan asam kritis. Sementara ANSI/IEEE membuat kriteria untuk kertas kraft dan untuk isolasi minyak tidak ada petunjuk. Selanjutnya disarankan pemilik atau operator menjaga kebenaran pikiran : umur maksimum minyak dan kertas adalah 600 C adalah temperatur maksimum minyak bagian atas yang diijinkan. Apabila temperatur melebihi 600 C, segera ambil langkah untuk membenarkan masalah ini. Rugi Listrik

Rugi-rugi I2R konduktor dan rugi inti yang bertambah dengan naiknya temperatur. Ini merupakan pemborosan energi dalam bentuk panas.

(c) Polimeric Wire Coating

Untuk beberapa jenis coating polimeric konduktor temperatur mencapai 1200 C dan lebih tinggi lagi dapat menghasilkan rugi-rugi dielektrik yang signifikan.

3) Tap Changer

Tap changer adalah alat perubah perbandingan transformasi untuk mendapatkan tegangan operasi sekunder yang lebih baik (diinginkan) dari tegangan jaringan/primer yang berubah-rubah. Tap changer yang hanya bisa beroperasi untuk memindahkan tap transformator dalam keadaan transformator tidak berbeban disebut “Off Load Tap Changer” dan hanya dapat dioperasikan manual.

Tap changer yang dapat beroperasi untuk memindahkan tap tarnsformator, dalam keadaan transformator berbeban disebut “On Load Tap Changer” dan dapat dioperasikan secara manual atau otomatis.

Ada dua cara kerja tap changer:

(a) Mengubah tap dalam keadaan trafo tanpa beban.

(b) Mengubah tapa dalam keadaan trafo berbeban (On Load Tap Changer/OLTC)

Transformator yang terpasang di gardu induk pada umumnya menggunakan tap changer yang dapat dioperasikan dalam keadaan trafo berbeban dipasang di sisi primer. Sedangkan transformator penaik tegangan di pembangkit atau pada trafo kapasitas kecil, umumnya menggunakan tap changer yang dioperasikan hanya pada saat tenaga beban OLTC terdiri dari:

1. Selector Switch.

2. Diverter Switch, dan

3. Transisi Resistor

Untuk mengisolasi dari bodi trafo (tanah) dan meredam panas pada saat proses perpindahan tap, maka OLTC direndam di dalam minyak isolasi yang biasanya terpisah dengan minyak isolasi utama trafo (ada beberapa trafo yang compartemennya menjadi satu dengan main tank).

Karena pada proses perpindahan hubungan tap di dalam minyak terjadi fenomena elektris, mekanis, kimia dan panas, maka minyak isolasi OLTC kualitasnya akan cepat menurun, tergantung dari jumlah kerjanya dan adanya kelainan di dalam OLTC.

4) Alat Pernapasan (Silicagel)

Karena pengaruh naik turunnya beban transformator maupun udara luar, maka suhu minyak pun akan berubah-ubah mengikuti keadaan tersebut.

Bila suhu minyak tinggi, minyak akam memuai dan mendesak udara di atas permukaan minyak keluar dari tangki, sebaliknya apabila suhu minyak turun, minyak menyusut maka udara luar akan masuk ke dalam tangki.

Kedua proses di atas disebut pernapasan transformator.

Akibat pernapasan transformator tersebut maka permukaan minyak akan selalu bersinggungan dengan udara luar. Udara luar yang lembab akan menurunkan nilai tegangan tembus minyak transformator, maka untuk mencegah hal tersebut, pada ujung pipa penghubung udara luar dilengkapi dengan alat pernapasan, berupa tabung berisi kristal zat hygroskopis.

5) Indikator

Untuk mengawasi selama transformator beroperasi, maka perlu adanya indikator pada transformator sebagai berikut:

(a) Indikator suhu minyak

(b) Indikator permukaan minyak

(c) Indikator sistem pendingin

(d) Indikator kedudukan tap

(e) Dan sebagainya




Gambar 11. Alat Pengukur Suhu


c. Peralatan Proteksi

1. Rele Bucholz

Rele Bucholz adalah alat/rele untuk mendeteksi dan mengamankan terhadap gangguan di dalam transformator yang menimbulkan gas. Gas yang timbul diakibatkan oleh karena:

a. Hubung singkat antar lilitan/dalam phasa.

b. Hubung singkat antar phasa.

c. Hubung singkat antar phasa ke tanah.

d. Busur api listrik antar laminasi.

e. Busur api listrik karena kontak yang kurang baik.

2. Pengaman Tekanan Lebih (Explosive Membrane/ Pressure-elief Vent

Alat ini berupa membrane yang dibuat dari kaca, plastik, tembaga atau katup berpegas, berfungsi sebagai pengaman tangki transformator terhadap kenaikan tekanan gas yang timbul di dalam tangki (yang akan pecah pada tekanan tertentu) dan kekuatannya lebih rendah dari kekuatan tangki transformator.

3. Rele Tekanan Lebih (Sudden Pressure Relay)

Rele ini berfungsi hampir sama seperti rele Bucholz, yakni pengaman terhadap gangguan di dalam transformator. Bedanya rele ini hanya bekerja oleh kenaikan tekanan gas yang tiba-tiba dan langsung menjatuhkan PMT.

d. Peralatan Tambahan untuk Pengaman Transformator

1. Rele Diffrensial

Berfungsi mengamankan transformator dari gangguan di dalam transformator antara lain, Flash Over antara kumparan atau kumparan dengan tangki atau belitan dengan belitan di dalam kumparan ataupun beda kumparan.

2. Rele Arus Lebih

Berfungsi mengamankan transformator dari arus yang melebihi dan dari arus yang telah diperkenankan lewat dari transformator tersebut dan arus lebih ini dapat terjadi oleh karena beban lebih atau gangguan hubung singkat.

3. Rele Tangki Tanah

Berfungsi untuk mengamankan transformator bila ada hubung singkat antara bagian yang bertegangan dengan bagian yang tidak bertegangan pada transformator.

4. Rele Hubung Tanah

Berfungsi untuk mengamankan transformator bila terjadi gangguan satu phasa ke tanah.

5. Rele Termis

Berfungsi untuk mencegah/mengamankan transfor-mator dari kerusakan isolasi kumparan, akibat adanya panas lebih yang ditimbulkan arus lebih. Besarnya yang diukur di dalam rele ini adalah kenaikan temperatur.

6. Minyak Trafo (Transformator Oil)

Fungsi dari Minyak Trafo adalah: Insulator yaitu menginsolasikan kumparan di dalam trafo supaya tidak terjadi loncatan bunga api listrik (hubungan pendek) akibat tegangan tinggi. Pendingin yaitu mengambil panas yang ditimbulkan sewaktu trafo berbeban lalu melepaskannya. Melindungi komponen-komponen di dalam trafo terhadap korosi dan oksidasi.

IP Browser

Album Kita