POWER GENERATION CLASS

MATERI PEMBELAJARAN LISTRIK "SEMANGAT DALAM BELAJAR"
Selamat Datang Di WebBlog "Power Generation Class"


DOWNLOAD SOFTWARE KONTROL INSTALASI GEDUNG
technoku_2@yahoo.co.id

Jumat, 31 Oktober 2008

THYRISTOR

KELUARGA THYRISTOR

Istilah Thyristor berasal dari tabung Thyratron-Transistor, dimana dengan perkembangan teknologi semikonduktor, maka tabung-tabung elektron yang bentuknya relatip besar dapat digantikan oleh tabung-tabung transistor yang berukuran jauh lebih kecil tanpa mengurangi kemampuan operasionalnya. Yang termasuk dalam keluarga thyristor adalan Silicon Controlled Rectifier, Diac, Triac yang semuanya didasari dari Dioda Lapis Empat (Four Layers Diode). Bahan dasar thyristor ini adalah dari silicon dengan pertimbangan jauh lebih tahan panas dibandingkan dengan bahan germanium. Thyristor ini banyak digunakan sebagai alat pengendali tegangan atau daya yang tinggi dengan kemampuan yang tinggi.

SILICON CONTROLLED RECTIFIER ( SCR )

Silicon Controlled Rectifier disingkat SCR dirancang untuk mengendalikan daya ac hingga 10 MW dengan rating arus sebesar 2000 amper pada tegangan 1800 volt dan frekuensi kerjanya dapat mencapai 50 kHz. Tahanan konduk dinamis suatu SCR sekitar 0,01 sampai 0,1 ohm sedangkan tahanan reversenya sekitar 100.000 ohm atau lebih besar lagi.

Konstruksi dasar dan simbolnya

SCR mempunyai tiga buah elektroda, yaitu Anoda, Kathoda dan Gate dimana anoda berpolaritas positip dan kathoda berpolaritas negatip sebagai layaknya sebuah dioda penyearah (rectifier). Kaki Gate juga berpolaritas positip. Gambar dibawah ini memperlihatkan pengembangan konstruksi dan diekuivalenkan dengan rangkaian kaskade transistor.

1. Penyulutan SCR

SCR dapat dihidupkan dengan arus penyulut singkat melalui terminal Gate, dimana arus gate ini akan mengalir melalui junction antara gate dan kathoda dan keluar dari kathodanya. Arus gate ini harus positip besarnya sekitar 0,1 sampai 35 mA sedangkan tegangan antara gate dan kathodanya biasanya 0,7 volt.

Jika arus anoka ke kathoda turun dibawah nilai minimum (Holding Current = IHO), maka SCR akan segera mati (Off). Untuk SCR yang berkemampuan daya sedang, besar IHO sekitar 10 mA. Tegangan maksimum arah maju (UBRF) akan terjadi jika gate dalam keadaan terbuka atau IGO = 0. Jika arus gate diperbesar dari IGO, misal IG1, maka tegangan majunya akan lebih rendah lagi.

Gambar dibawah ini memperlihatkan salah satu cara penyulutan SCR dengan sumber searah (dc), dimana SCR akan bekerja dengan indikasi menyalanya lampu dengan syarat saklar PB1 dan PB2 di ON kan terlebih dahulu.

Triggering untuk penyulutan SCR dengan sumber dc ini tidak perlu dilakukan secara terus menerus, jika saklar PB1 dibuka, maka lampu akan tetap menyala atau dengan perkataan lain SCR tetap bekerja. Dibawah ini Memperlihatkan cara penyulutan SCR dengan sumber bolak-balik (ac).



Dengan mengatur nilai R2 (potensiometer), maka kita seolah mengatur sudut penyalaan (firing delay) SCR. Untuk penyulutan SCR dengan sumber arus bolak-balik, harus dilakukan secara terus menerus, jadi saklar S jika dilepas, maka SCR akan kembali tidak bekerja.

Gambar dibawah ini memperlihatkan bentuk tegangan dan pada terminal SCR dan beban. Pengendalian sumber daya dengan SCR terbatas hanya dari 0­0 sampai 900.




2. Pengujian SCR

Kondisi SCR dapat diuji dengan menggunakan sebuah ohmmeter seperti layaknya dioda, namun dikarenakan konstruksinya pengujian SCR ini harus dibantu dengan penyulutan kaki gate dengan pulsa positip. Jadi dengan menghubung singkat kaki anoda dengan gate, kemudian diberikan sumber positip dari meter secara bersama dan katoda diberi sumber negatipnya, maka akan tampak gerakan jarum ohmmeter yang menuju nilai rendah penunjukkan ohm dan kondisi ini menyatakan SCR masih layak digunakan. Sedangkan jika penunjukkan jarum menunjuk pada nilai resistansi yang tinggi, maka dikatakan kondisi SCR menyumbat atau rusak.


DIAC

Istilah diac diambil dari Dioda AC yang merupakan salah satu dari keluarga thyristor dan termasuk dalam jenis Bidirectional Thyristor. Diac mempunyai dua buah elektroda atau terminal dan dapat menghantar dari kedua arah oleh karenanya diac dianggap sebagai homo atau non-polar. Diac tersusun dari empat lapis semikonduktor seperti dioda lapis empat. Gambar ini memperlihatkan ekuivalen dan simbol diac.


1. Prinsip kerja Diac

Diac mempunyai impedansi yang tinggi dalam dua arah,guna mencapai titik konduknya diperlukan tegangan antara 28 sampai 36 volt. Kita perhatikan gambar a diatas, jika tegangan diberikan pada diac menyamai atau melebihi tegangan konduknya, maka salah satu saklar akan menutup, demikian sebaliknya untuk kondisi yang sama salah satu saklarnya juga akan menutup.

2. Identifikasi Diac

Karena homopolar, maka untuk menentukan kaki diac adalah sama saja baik yang kiri maupun yang kanan. Bentuk fisiknya menyerupai dioda rectifier dengan ciri-ciri seperti yang digambarkan ini.

Sistem pengkodeannya tergantung dari pabrik pembuatnya, sebagai contoh Motorola mengeluarkan tipe 1N5758 sampai 1N5761 sedangka PhilipsAustralia mengeluarkan tipe BR100.


3.Penggunaan Diac dalam rangkaian

Piranti Diac banyak digunakan sebagai pemicu rangkaian pengendali daya, misalnya pemicu TRIAC. Gambar dibawah ini memperlihatkan salah satu contoh rangkaian yang melibatkan Diac.




TRIAC

Triac dipersiapkan untuk mengendalikan daya bolak-balik secara penuh dari 0o hingga 180o. Triac mempunyai tiga elektroda mirip dengan SCR, namun Triac dapat menghantarkan arus dalam dua arah. Simbol dan konstruksi Triac diperlihatkan seperti pada gambar dibawah ini.

1. Penyulutan Triac

Gambar berikut memperlihatkan metoda penyulutan Triac secara sederhana, dimana pada rangkaian tersebut kapasitor C akan mengisi muatannya lewat R1 dan R2 setiap setengah perioda.



Selama setengah perioda positip, MT2 akan akan lebih positip dari MT1, sehingga pelat atas kapasitor akan bermuatan positip. Jika tegangan pada kapasitor muncul hingga mencapai harga yang mencukupi untuk pemenuhan arus gate, maka Triac akan ON. Kecepatan pengisian kapasitor diatur oleh potensiometer R2, dimana jika hambatannya besar, maka pengisiannya akan lambat sehingga terjadi penundaan penyalaan. Jika nilai R2 kecil, maka pengisian kapasitor akan lebih cepat dan arus yang mengalir ke beban akan tinggi. Metoda lain adalah dengan melibatkan piranti Diac seperti terlihat pada gambar dibawah ini. dimana sering terdapat Triac yang dikemas bersama Diac dalam satu chip dan dikenal dengan nama Quadrac.



TRANSISTOR

TRANSISTOR BIPOLAR

Transistor adalah piranti elektronik yang menggantikan fungsi tabung elektron-trioda, dimana transistor ini mempunyai tiga elektroda , yaitu Emitter, Collector dan Base. Fungsi utama atau tujuan utama pembuatan transistor adalah sebagai penguat (amplifier), namun dikarenakan sifatnya, transistor ini dapat digunakan dalam keperluan lain misalnya sebagai suatu saklar elektronis. Susunan fisik transistor adalah merupakan gandengan dari bahan semikonduktor tipe P dan N seperti digambarkan dibawah ini.

Sedangkan gambar rangkaian penggantinya sama dengan dua buah dioda yang dipasang saling bertolak seperti terlihat dibawah ini.


Berikut memperlihatkan beberapa bangun fisik dan konstruksi transistor bipolar, dikatakan bipolar karena terdapat dua pembawa muatan , yaitu elektron bebas dan hole. Sedangkan jenisnya ada dua macam, yaitu jenis PNP dan NPN yang simbolnya diperlihatkan pada gambar dibawah ini.



Bangun fisik dan konstruksi transistor bipolar


Simbol transistor

Kedua jenis PNP dan NPN tidak ada bedanya, kecuali hanya pada cara pemberian biasnya saja. Bentuk fisik transistor ini bermacam-macam kemasan, namun pada dasarnya karena transistor ini tidak tahan terhadap temperatur, maka tabungnya biasanya terbuat dari bahan logam sebagai peredam panas bahkan sering dibantu dengan pelindung (peredam) panas (heat-sink).

1. PENENTUAN ELEKTRODA TRANSISTOR

Spesifikasi transistor yang lengkap dapat anda peroleh dari buku petunjuk transistor, dimana dalam buku tersebut akan anda peroleh karakteristik fisik dan listrik suatu jenis transistor bahkan dilengkapi dengan transistor ekuivalennya. Berikut ini adalah gambaran spesifikasi transistor yang banyak digunakan khususnya dalam penentuan elektroda dari transistor tersebut.



2. PENGKODEAN TRANSISTOR

Hampir sama dengan pengkodean pada dioda, maka huruf pertama menyatakan bahan dasar transistor tersebut, A = Germaniun dan B = Silikon, sedangkan huruf kedua menyatakan penerapannya.
Berikut ini adalah huruf-huruf kedua yang dimaksud :
C = transistor frekuensi rendah
D = transistor daya untuk frekuensi rendah
F = transistor frekuensi tinggi
L = transistor daya frekuensi tinggi
Contoh penerapan kode ini diantaranya adalah BF 121, AD 101, BC 108 dan ASY 12.

3. PENGUJIAN TRANSISTOR

Dengan menganggap transistor adalah gabungan dua buah dioda, maka anda dapat menguji kemungkinan kerusakan suatu transistor dengan menggunakan ohmmeter dari suatu multitester. Kemungkinan terjadinya kerusakan transistor ada tiga penyebab yaitu :

a. Salah pemasangan pada rangkaian

b. Penangan yang tidak tepat saat pemasangan c. Pengujian yang tidak professional Sedangkan kemungkinan kerusakan transistor juga ada tiga jenis, yaitu : a. Pemutusan b. Hubung singkat

c. Kebocoran Pada pengujian transistor kita tidak hanya menguji antara kedua dioda tersebut, tapi kita juga harus melakukan pengujian pada elektroda kolektor dan emiternya.

4. NILAI BATAS SUATU TRANSISTOR

Sebagaimana telah disebutkan bahwa bahan semikonduktor akan berubah sifat jika menerima panas yang berlebihan. Suhu maksimal sutu transistor Germanium adalah sekitar 75o C sedangkan jenis Silikon sekitar 150o C. Daya yang disalurkan pada sebuah transistor harus sedemikian rupa sehingga suhu maksimalnya tidak dilampaui dan untuk itu diperlukan bantuan pendingin baik dengan Heat Sink atau dengan kipas kecil (Fan). Pada saat penyolderan kaki-kaki transistor, harus dipertimbangkan juga temperatur solder dan selain itu biasanya digunakan alat pembantu dengan jepitan (tang) guna pengalihan penyaluran panas. Peralihan panas transistor ke pendingin yang baik adalah dengan bantuan Pasta Silikon yang disapukan antara transistor dengan badan pendinginnya. Selain itu biasanya pendingin tersebut diberi cat warna hitam guna memudahkan penyaluran panas.


5. PENGGUNAAN TRANSISTOR

Dengan menganggap transistor adalah gabungan dua buah dioda, maka anda dapat menguji kemungkinan kerusakan suatu transistor dengan menggunakan ohmmeter dari suatu multitester. Kemungkinan terjadinya kerusakan transistor ada tiga penyebab yaitu :
a. Salah pemasangan pada rangkaian
b. Penangan yang tidak tepat saat pemasangan
c. Pengujian yang tidak professional
Sedangkan kemungkinan kerusakan transistor juga ada tiga jenis, yaitu :
a. Pemutusan
b. Hubung singkat
c. Kebocoran
Pada pengujian transistor kita tidak hanya menguji antara kedua dioda tersebut, tapi kita juga harus melakukan pengujian pada elektroda kolektor dan emiternya.


6. NILAI BATAS SUATU TRANSISTOR

Sebagaimana telah disebutkan bahwa bahan semikonduktor akan berubah sifat jika menerima panas yang berlebihan. Suhu maksimal sutu transistor Germanium adalah sekitar 75o C sedangkan jenis Silikon sekitar 150o C. Daya yang disalurkan pada sebuah transistor harus sedemikian rupa sehingga suhu maksimalnya tidak dilampaui dan untuk itu diperlukan bantuan pendingin baik dengan Heat Sink atau dengan kipas kecil (Fan). Pada saat penyolderan kaki-kaki transistor, harus dipertimbangkan juga temperatur solder dan selain itu biasanya digunakan alat pembantu dengan jepitan (tang) guna pengalihan penyaluran panas. Peralihan panas transistor ke pendingin yang baik adalah dengan bantuan Pasta Silikon yang disapukan antara transistor dengan badan pendinginnya. Selain itu biasanya pendingin tersebut diberi cat warna hitam guna memudahkan penyaluran panas.

7. PENGGUNAAN TRANSISTOR

Sebagaimana tujuan dari pembuatan transistor, maka transistor awalnya dibuat untuk menguatkan (amplifier) signal-signal, daya, arus, tegangan dan sebagainya. Namun dikarenakan karakteristik listriknya, penggunaan transistor jauh lebih luas dimana transistor ini banyak digunakan juga sebagai saklar elektronik dan juga penstabil tegangan.

  • Transistor sebagai saklar

Dengan memanfaatkan sifat hantar transistor yang tergantung dari tegangan antara elektroda basis dan emitter (Ube), maka kita dapat menggunakan transistor ini sebagai sebuah saklar elektronik, dimana saklar elektronik ini mempunyai banyak kelebihan dibandingkan dengan saklar mekanik, seperti :
a. Fisik relative jauh lebih kecil,
b. Tidak menimbulkan suara dan percikan api saat pengontakan.
c. Lebih ekonomis.

  • Transistor sebagai pengatur tegangan (Voltage-Regulator)

DIODA SEMIKONDUKTOR

DIODA

Dioda berasal dari kata DI = dua dan ODA = elektroda atau dua elektroda, dimana elektroda-elektrodanya tersebut adalah ANODA yang berpolaritas positip dan KATHODA yang berpolaritas negatip.

Ada berbagai jenis dioda yang dibuat sesuai dengan fungsinya tanpa meninggalkan karakteristik serta spesifikasinya, seperti dioda penyearah (rectifier), dioda Emisi Cahaya (LED), dioda Zenner, dioda photo (Photo-Dioda) dan Dioda Varactor.

1. DIODA PENYEARAH (RECTIFIER)

Dioda penyearah adalah jenis dioda yang terbuat dari bahan Silikon yang berfungsi sebagai penyearah tegangan / arus dari arus bolak-balik (ac) ke arus searah (dc) atau mengubah arus ac menjadi dc. Secara umum dioda ini disimbolnya

Kaki-kaki dioda yaitu kaki katoda ditandai dengan garis pada ujungnya

2. DIODA ZENER

Dioda Zener merupakan dioda junction P dan N yang terbuat dari bahan dasar silikon. Dioda ini dikenal juga sebagai Voltage Regulation Diode yang bekerja pada daerah reverse (kuadran III). Potensial dioda zener berkisar mulai 2,4 sampai 200 volt dengan disipasi daya dari ¼ hingga 50 watt.

3. DIODA EMISI CAHAYA ( LIGHT EMITTING DIODE )

Dioda emisi cahaya atau dikenal dengan singkatan LED merupakan Solid State Lamp yang merupakan piranti elektronik gabungan antara elektronik dengan optik, sehingga dikategorikan pada keluarga “Optoelectronic”. Sedangkan elektroda-elektrodanya sama seperti dioda lainnya, yaitu anoda (+) dan Katoda (-). Ada tiga kategori umum penggunaan LED, yaitu : - Sebagai lampu indikator, - Untuk transmisi sinyal cahaya yang dimodulasikan dalam suatu jarak tertentu, - Sebagai penggandeng rangkaian elektronik yang terisolir secara total. Simbol, bangun fisiknya dan konstruksinya diperlihatkan pada gambar berikut.



Bahan dasar yang digunakan dalam pembuatan LED adalah bahan Galium Arsenida (GaAs) atau Galium Arsenida Phospida (GaAsP) atau juga Galium Phospida (GaP), bahan-bahan ini memancarkan cahaya dengan warna yang berbeda-beda. Bahan GaAs memancarkan cahaya infra-merah, Bahan GaAsP memancarkan cahaya merah atau kuning, sedangkan bahan GaP memancarkan cahaya merah atau hijau.

Seperti halnya piranti elektronik lainnya , LED mempunyai nilai besaran terbatas dimana tegangan majunya dibedakan atas jenis warna

TABEL WARNA LED DAN TEGANGANNYA

Warna

Tegangan Maju

Merah

1.8 volt

Orange

2.0 volt

Kuning

2.1 volt

Hijau

2.2 volt

Sedangkan besar arus maju suatu LED standard adalah sekitar 20 mA. Karena dapat mengeluarkan cahaya, maka pengujian LED ini mudah, cukup dengan menggabungkan dengan sumber tegangan dc kecil saja atau dengan ohmmeter dengan polaritas yang sesuai dengan elektrodanya.


4. DIODA CAHAYA ( PHOTO-DIODE)

Secara umum dioda-cahaya ini mirip dengan PN-Junction, perbedaannya terletak pada persambungan yang diberi celah agar cahaya dapat masuk padanya.

Dioda cahaya ini bekerja pada daerah reverse, jadi hanya arus bocor saja yang melewatinya. Dalam keadaan gelap, arus yang mengalir sekitar 10 A untuk dioda cahaya dengan bahan dasar germanium dan 1A untuk bahan silikon. Kuat cahaya dan temperature keliling dapat menaikkan arus bocor tersebut karena dapat mengubah nilai resistansinya dimana semakin kuat cahaya yang menyinari semakin kecil nilai resistansi dioda cahaya tersebut. Penggunaan dioda cahaya diantaranya adalah sebagai sensor dalam pembacaan pita data berlubang (Punch Tape), dimana pita berlubang tersebut terletak diantara sumber cahaya dan dioda cahaya. Jika setiap lubang pita itu melewati antara tadi, maka cahaya yang memasuki lubang tersebut akan diterima oleh dioda cahaya dan diubah dalam bentuk signal listrik. Sedangkan penggunaan lainnya adalah dalam alat pengukur kuat cahaya (Lux-Meter), dimana dalam keadaan gelap resistansi dioda cahaya ini tinggi sedangkan jika disinari cahaya akan berubah rendah. Selain itu banyak juga dioda cahaya ini digunakan sebagai sensor sistem pengaman (security) misal dalam penggunaan alarm.

5. DIODA VARACTOR

Dioda Varactor disebut juga sebagai dioda kapasitas yang sifatnya mempunyai kapasitas yang berubah-ubah jika diberikan tegangan. Dioda ini bekerja didaerah reverse mirip dioda Zener. Bahan dasar pembuatan dioda varactor ini adalah silikon dimana dioda ini sifat kapasitansinya tergantung pada tegangan yang diberikan padanya. Jika tegangan tegangannya semakin naik, kapasitasnya akan turun. Dioda varikap banyak digunakan pada pesawat penerima radio dan televisi di bagian pengaturan suara (Audio).

6. MENGUJI DIODA

Dioda ini dapat diuji kondisinya secara sederhana dan ada beberapa cara pengujiannya, yaitu :

1. Pengujian dengan Multitester (Ohmeter)
2. Pengujian dengan Continous Tester
3. Pengujian dengan batere + lampu pijar
4. Pengujian dengan batere + loudspeaker

7. Menguji dioda dengan Ohmmeter

Untuk itu diperlukan sebuah multitester atau sebuah ohmmeter analog/ digital. Multitester atau Avometer Analog mempunyai fasilitas pengukur hambatan (ohmmeter) dimana jenis ohmmeter yang digunakan biasanya ohmmeter-seri, dimana secara konstruksi polaritas batere yang terpasang dalam meter berlawanan polaritas dengan terminal ukurnya. Atau dengan perkataan lain, terminal positip meter adalah mempunyai polaritas negatip batere, sebaliknya terminal negatip meter mempunyai polaritas positip batere.


I N G A T !!! POLARITAS TERMINAL METER BERLAWANAN DENGAN POLARITAS BATERE DI DALAMNYA

Dengan demikian guna menguji sebuah dioda dengan menggunakan Avometer prinsipnya adalah sebagai berikut :
  1. Anda posisikan Avometer pada posisi ohm dengan skala rendah
  2. Tentukan terlebih dahulu elektroda anoda dan katoda dari dioda tersebut
  3. Hubungkan terminal + (positip) meter dengan Anoda dari dioda yang akan ditest sedangkan terminal – (negatip) meter dengan Katoda dioda. (hubungan ini adalah reverse)
  4. Dalam posisi semacam ini, jika dioda masih baik, maka jarum meter tidak akan bergerak. Namun jika dalam posisi ini jarum bergerak, maka dapat dikatakan dioda terhubung singkat (rusak).
  5. Ulangi langkah 2 diatas dengan polaritas sebaliknya, dimana Anoda dihubungkan dengan negatip meter dan Katoda dengan positip meter. (hubungan ini adalah forward).
  6. Dalam posisi semacam ini, jika dioda masih baik, maka jarum meter akan bergerak. Namun jika dalam posisi ini jarum meter tidak bergerak, maka dapat dikatakan dioda putus (rusak).

Kamis, 30 Oktober 2008

Kado lebaran

kado lebaran buat teman2ku semua. clik disini

K3

KESELAMATAN DAN KESEHATAN KERJA


Pengantar

SELALU ada resiko kegagalan (risk of failures) pada SETIAP AKTIFITAS pekerjaan. Dan saat kecelakaan kerja (work accident) terjadi, seberapapun kecilnya, akan mengakibatkan efek kerugian (loss). Karena itu sebisa mungkin dan sedini mungkin, kecelakaan / potensi kecelakaan kerja harus dicegah / dihilangkan, atau setidak-tidaknya dikurangi dampaknya.

Penanganan masalah keselamatan kerja di dalam sebuah perusahaan harus dilakukan secara serius oleh seluruh komponen pelaku usaha

Secara umum penyebab kecelakaan di tempat kerja adalah sebagai berikut:
- Kelelahan (fatigue)
- Kondisi kerja dan pekerjaan yang tidak aman (unsafe working condition)

- Kurangnya penguasaan pekerja terhadap pekerjaan, ditengarai penyebab awalnya (pre-cause) adalah kurangnya training
- Karakteristik pekerjaan itu sendiri.

Secara garis besar, bahaya/resiko dikelompokkan menjadi tiga kelompok yaitu:
1. Bahaya/ resiko lingkungan

Termasuk di dalamnya adalah bahaya-bahaya biologi, kimia, ruang kerja, suhu, kualitas udara, kebisingan, panas/ termal, cahaya dan pencahayaan. dll.
2. Bahaya/ resiko pekerjaan/ tugas
Misalnya: pekerjaan-pekerjaan yang dilakukan secara manual, peralatan dan perlengkapan dalam pekerjaan, getaran, faktor ergonomi, dll.
3. Bahaya/ resiko manusia
Kejahatan di tempat kerja, termasuk kekerasan, sifat pekerjaan itu sendiri yang berbahaya, umur pekerja, Personal Protective Equipment, kelelahan dan stress dalam pekerjaan,
pelatihan, dsb

PENYEBAB KECELAKAAN OLEH FAKTOR MANUSIA

No
Jenis penyebab kecelakaan
prosentase
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

Sikap Kerja yang tidak tepat

Kegagalan mengenal bahaya potensial

Kegagalan perkiraan jarak dan kecepatan

Sikap selalu menggampangkan

Sikap tidak bertanggung jawab

Kegagalan perhatian yang konstan

Rasa takut gagal

Penglihatan tidak sempurna

Gangguan-gangguan organis

Reaksi lambat

Tekanan darah tinggi

Rasa rendah diri

Tekanan mental dan rasa selalu was-was

Kelelahan phisik

Tidak berpengalaman

Perhatian terhadap lingkungan yang tidak sempurna

Lain-lain

14%

12%

12%

10%

8%

8%

6%

4%

4%

4%

2%

2%

2%

2%

2%

2%

6%

Contoh kejadian

Seringkali seseorang mengira dirinya telah berhasil “beradaptasi” dengan lingkungan yang bising manakala tidak merasa terganggu lagi dengan “tingkat kebisingan” yang pada awalnya sangat mengganggu dirinya. Jika hal yang sama terjadi pada anda, HATI-HATI! Mungkin fungsi pendengaran anda mulai terganggu...

Indikator adanya (potensi) gangguan kebisingan beresiko tinggi diantaranya:
1. Terdengarnya suara-suara dering/ berfrekuensi tinggi di telinga

2. Volume suara yang makin keras pada saat harus berbicara dengan orang lain

3. “Mengeraskan” sumber suara hingga tingkatan tertentu yang dianggap oleh seseorang sebagai kebisingan

PERLENGKAPAN DAN PERALATAN KESELAMATAN KERJA

1. Pakaian kerja

2. Sabuk pengaman (safety belt)

3. Topi atau helm pengaman (safety helmet)

4. Sepatu kerja

5. Alat penutup telinga

6. Sarung tangan

7. Kaca mata

8. Masker hidung

9. Alat bantu pernafasan (breathing apparatus)

10. Penutup dada untuk las listrik

11. Jas hujan


MEMBANGUN BUDAYA K3 DITEMPAT KERJA

1. Budaya K3 merupakan suatu proses perubahan perilaku yang diperlukan untuk mendukung tercapainya Zero Injury Rates.

2. Ada 4 tahapan dalam membangun budaya K3.

3. Tahapan pertama dinamakakan reactive atau natural instincts, artinya kita membutuhkan K3 s­etelah adanya kejadian/ cedera/ kecelakaan. Setiap orang menjadi sibuk setelah ada kecelekaan.

4. Tahapan kedua dinamakan Dependent, artinya kita melaksanakan K3 apabila disuruh atau sedang diawasi/ disupervisi oleh pimpinan kita.

5. Tahapan ketiga dinamakan Independent, artinya kita melaksanakan K3 hanya untuk kepentingan diri kita sendiri.

6. Tahapan keempat adalah Interdependent, artinya kita melaksanakan K3 bukan hanya untuk kita sendiri, akan tetapi kita akan saling mengingatkan/ memperhatikan apabila ada sesama rekan sekerja ada yang lupa/ lalai dalam menerapkan budaya K3.

7. Mengelola perubahan dimulai dari adanya rasa memiliki K3, Nilai-nilai K3 diterima sebagai bagian dari nilai korporasi perusahaan, adanya pemahaman semua kejadian/ cedera/ kecelakaan bisa dicegah, dan manusia adalah unsur yang paling kritis dalam suksesnya sebuah program K3.

8. Marilah kita membuka diri, baik sebagai pribadi, unit kerja, atau lebih luas lagi diperusahaan kita, pada saat ini kita berada pada tahapan K3 yang mana ?.


Trik and tips

GARA GARA VIRUS
Yang memblokir comp kita

1. Memunculkan Option My Computer Yang Tersembunyi

HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Internet Settings/Zones/0
Klik ganda Flags kemudian ganti menjadi Decimal dan masukkan angka 1 pada Value Data.

2. Mengaktifkan Task Manager yang dinonaktifkan oleh virus

HKEY_CURRENT_USER\Software\Microsoft\Windows\Curre ntVersion\Policies\System
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current
Version\Policie
s\System
Delete/hapus DWORD Value yang ber nama DisableTaskMgr.

Rabu, 29 Oktober 2008

Semangat


Maju Terus Technoku

TIPS ON TECHNO

Kembalikan data hilang
Karena Virus

Pusing data di Flasdisk hilang

Caranya :
Syaratnya flasdisk jangan diformat

  1. Masuk dos : pilih drive flasdisk kamu yang aktif
  2. Ketikan : attrib –s –h *.* /s /d
  3. Refresh
  4. Maka………abraketabra, Data kamu munculllll

Contoh : G:\> attrib –s –h *.* /s /d

Selamat mencoba

Techno –Techno – Techno - Techno - Techno – Techno - Techno – Techno - Techno – Techno - Techno – Techno By : japrak

IP Browser

Album Kita